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simulation. For Hamiltonians containing up to four operators, a mapping [14.15] to an equivalent set of stochastic differential
second-order partial differential equation is generated, which can _equations (SDEs) to sample the moments of the distribution. In
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Why did | start with this research... tﬂ ]
Given a task (from funder!): A

Understand properties of large rocks from small samples...

Data from synchrotron radiation facilities.

Measurement done at different positions in the
conical beamline gives different resolution.
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Figure 5: Examples of zooming in on regions in the CT-images for the two
3D chalk samples. To the left limestone (a) and to the right Aalborg chalk
(b). Black (Z = 1) voxels constitutes the pore domain (assumed to be filled
with brine). White (Z = 0) voxels represents regions of homogenous chalk.
Aalborg chalk (b) contains a more complex pore morphology and was imaged
with ptychographic X-ray nanotomography, which explains the sharper image
compared to (a). Since the side length of the full samples are in the order of
NAr =~ 25 um (Table 2), the subvolumes shown here represents only about 1%
of the chalk sample domains in our calculations.
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Nuclear Magnetic Resonance
NMR important tool in modern technology. = UJ

Mobile Ex Situ High Resolution NMR ’P

0 Ve
APPLICATIONS:

¢ |ndustrial sensing
® Qil well logging
¢ Medical imaging for large subjects

e Spectroscopy

¢ Imaging subjects or objects with ferromagnetic
components

e Cargo inspection

e Stand-off detection
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After simplifications of Bloch’s equations =~ " un«"
for NMR dynamics, we are left with a

reaction-diffusion equation
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with Robin boundary conditions
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We integrate out the spatial degrees e

M(t) = |, M (x,t)dx

to obtain a time-dependent total magnetization

For uniform initial conditions, Gauss’ theorem
can provide the short time asymptote

1 dM(t) ~ podS
M) dt |, |4
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In many applications the domaing

N

v T~ oe | &=

qary | = B || ¢b Graphics ] =1

Qlx @ @ q

=)
=
il

iy
D149 ym nim | 10,00 k x
4 Boundary System 1| o ; -
4 A problem occurred when building mesh feature 'Free Tetrahedral 1'.
b [ Vview 1
v A\ Geometry 1 Failed to generate mesh for domain.
[ Import 1 (impl) - Domain: 1
& Form Union (fin) Internal error in boundary respecting.
x - x-coordinate: -0.5
& Materials - y-coordinate: 2
~ y? Laplace Equation (Ipet - z-coordinate: 21.1667
- :
P2 Laplace Equation 1 l oK I
P& Zero Flux 1 _ .
P Initial Values 1 | Messages 2 = Progress [ Log| =1

@ Dirichlet Boundary

@ Dirichlet Boundary

[ vorumenti - IST=TES] |

© Arkiv Redigera  Wisa

Imported 1 geometry objects from fzhome/16/7/66472/ngs/32_32 32 pores_only.stl.

Elnfoga Faormat  Verkbyg
;Tal;ell Finster  Hjélp

 Adobe POF
f: ¢ Acrobat Comments X !: - ! (<1 T — : - il I
A= AR - | 1.96 GB | 5.93 GB

4]

o] QIS FlE ]3]0

sv|[2 (o B £ ) ol 12:21 B




Try a random approach! e

[.3.3.| Random walk method |( RWM). The RWM can be applied to find the local solution
of second-order partial differential equations of the form

ou(x,t) 4 du(X, f) I

0 & %i(x)

ot OX; 5

’ﬂu(x )

X; 0X;

S B0 FE e nuen ok ©

where o;, f;; are real-valued functions defined on R?, d =1 is an integer, and ¢, p denote
real-valued functions defined on R“ x [0,o0). The_domain of definition of Equation (6) is
D x (0,0¢), where D © R is an open bounded set. The solution u:D x (0,00) — R depends
on the initial and boundary conditions that need to be specified. The operator ot Equation (6)
includes a large number of interesting special cases; for example, parabolic, hyperbolic, elliptic
partial differential equations in R* correspond to the steady—state version of Equation (6) with
d=2 and f5(X) f2(X)— f11(X) f2:(x)=0; >0; <0, respectively. Therefore, for example, the
_Laplace, Poisson and Helmholtz equations are special cases of Equation (6).

The RWM method can be applied to find the local solution of Equation (6) with Dirichlet

_and/or Neumann boundary conditions. The solution by this method involves three steps. Firstz,

a diffusion process X with generator coinciding with the differential operator of Equation (6)
has to be constructed. Second, a relationship needs to be established between the value of
the unknown function u at (X,7)= D x (0,0¢), the boundary conditions, and an expectation
depending on the sample paths of X. Properties of diffusion processes, features of stochastic
integrals, and Ito’s formula can be used to obtain this relationship. Third, a Monte Carlo
algorithm needs to be developed to estimate the expectation giving u(X.7).
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When discussing the convergence of a stochastic calculation we need to men-
tiomn:

1) A large enough number of trajectories to obtain a statistically significant
result;

2) A small enough step-size to explore the small scale geometry of the media.
The latter issue is also directly connected to the resolution chosen for a digital
media.

If conditions 1) and 2) are fulfilled, one can accuratelly simulate diffusion
processes with Dirichlet ( pg — oo) and Neumann (pg — 0) boundary conditions
in Eq. (4). However, for Robin boundary conditions we need to consider also a
third point.

3) Probability based modeling of the surface relaxation, including:

3a)l a correct (algorithm dependent) relation between the local probability
for surface relaxation (p,) and the function pg (x,1);

3b) A local description of the surface area for a digital media.

e —




3a) We have derived (first order) relation between
parameters in PDE model and the RWM:

ps = Arp/Dy.

3b) We have constructed (first order) local boundary
conditions that can be calculated “on the fly”:

(a) S=1 (b) S=2 (c) 5=2
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(d) S=2 (e) S=2 (f) S=2
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Above illustrated in 2D, generalized to any dimension.
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Comparison with analytic formulae: Ball - [ﬂ
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Comparison with analytic formulae: Cube %
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Simulations on 3D tomography images - tg -
of chalk with a size in the order of et
103X 103X 10° voxels and resolution 10 nm
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5. Discussion and summary

For the NMR relaxation simulation described here, we started
from a deterministic partial differential equation and then used
an equivalent stochastic particle formulation for the calculation.
As expected from the previous investigation [15], the systematic

errors for the NMR relaxation caused by the digitalisation of the
2D surfaces within the 3D geometrical objects occurs qualitatively
different depending on the object and its orientation in relation to
the coordinate system in a digital image. Here we have guantified

those systematic errors and showed how they can be reduced for

the ball and the cube in 3D and for an artificial 2D porous media
for which comparative finite element calculations were tractable.

For two complex digital domains representing different chalk
samples, that had similar porosity, but with substantially different
specific area, we found qualitatively different relaxation dynamics.
Additionally for each of those complex domains the relaxation
curve without local boundary conditions were markably lower
and we expect to have removed a major part of the errors between

the true NMR relaxation and its simulated dynamics.




Stefan-problem

2 The Stefan problem in one dimension

In our model for the one-dimensional Stefan problem we consider a block of
ice with infinite extent and one surface to air. At £ = 0 there is no water
phase and the ice phase is at T;.. = 0°. But for £ > 0 the ice has started
melting and thus we have a water phase on top of the ice. The temperature
of the surface, i.e. the interface between air and water for ¢ > 0 is changing
over time according to f(f) and to simulate a melting process, we assume
f(t) > 0 ¥t. This yields the following equations:

JdT 02T |
ﬁzﬁl‘t@’ 0<x<s(t), t >0, (2.1)
T(0,t) = f(t), t >0, (2.2)
T(x,0)=0, (2.3)
ds T
[p— ——f — : t >0, 2.4
s(0) =0, (2.5)

201909 T(s(t),t) =Ty =0, t>0. (2.6)



Stefan-problem

The analytical solution to the problem when f(t) = T} is (see e.g. [3|)

erf(A)
s(t) =2 \art (2.8)
BYTAN erf A =Ty,

T(x.t) — T, (1 _ erf(m/@m))

where 3 = ¢/l and erf (x) is the error function defined as % I eV’ dy.
A special case when an analytical solution also can be found is when f(t) =

el — 1. We will use this for comparison with our RWM in the result section.
Provided 3 = 1, the solution is [9]

T(x,t) =7 -1
s(t) =t (2:9)
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Stefan-problem tg )

Modelling of the moving boundary

Each walker carries an amount of heat that moves the boundary a step As.
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Stefan-problem
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(a) Analytical solution from (2.8). (b) i?{losgiutwn with n- =107 and

Figure 4.3: Solutions for Stefan problem with boundary condition f(t) = 1
fort € [0, 1].
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Stefan-problem 5 tﬂj

Results for BC: e t-1
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Stefan-problem

Figure 4.9: RWM model where f(t) is set to observed day temperatures at

Jrebro airport 1-3 March 2019. x in mm and t € [0,62 h].
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Thank you! .

Interested to read more:
Ogren, M. (2014). Local boundary conditions for NMR-relaxation in digitized
porous media. The European Physical Journal B, 87 (11), 255. (arXiv:1312.6581)

Ogren, M. , Jha, D. , Dobberschiitz, S. , Miiter, D. , Carlsson, M. , Gulliksson, M.
, Stipp, S. & Serensen, H. (2019). Numerical simulations of NMR relaxation in

chalk using local Robin boundary conditions.
Journal of magnetic resonance, 308. (arXiv:1909.09618)

A random walk method for the heat equation with moving boundary.
Andreas Lockby, Bachelor thesis 2016:
http://oru.diva-portal.org/smash/record.jsf?pid=diva2%3A935914&dswid=3345

Solution of the Stefan problem with general time-dependent boundary conditions
using a random walk method. Daniel Stoor, Bachelor thesis 2019:
http://uu.diva-portal.org/smash/record.jst?pid=diva2%3A 1325632 &dswid=-6545
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