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Background: What is the problem we would like to 
say something about using numerical calculations?
Quantum dynamics of molecular BEC dissociation! 

Formulation: How can we write up the dynamical
evolution of the system in differential equations?
Linear ODEs for operators, evolve a complex matrix!

Improvements: What have we done to be able to treat
large (i.e. realistic) arbitrary shaped 3D systems?
Symmetries for block-matrices, D-block-Hankel matrix!

Some numerical results!

Outline of  my talk:



i) Conceptual:
Molecular dissociation as a fermionic analog of optical 
parametric down-conversion, a good candidate for 
developing the paradigm of fermionic quantum atom optics 
in fundamental physics and a test bench for simulations.

ii) Pragmatic:
Can we explain the experimentally observed pair-correlations. 
(Molecules made up of fermions have longer lifetime.)

Motivation to study dissociation into fermions:

dimers fermions



Fermi-Bose Hamiltonian and applications



Exact simulation of molecular dissociation: MÖ, KK, JC, E.P.L. 2010.

We have earlier applied the Gaussian phase-space 
representation to stochastically model a 1D uniform 
molecular BEC dissociating into fermionic atoms.
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Implement a molecular-field approximation

Linear operator equations!



Fourier transformation to momentum-space 

 

 

Represent the BEC geometry with a D-dimensional Fourier series.



Linear ODEs for momentum-space operators

Fourier coefficients are delta spikes for uniform systems.



Uniform (even and real) condensate wavefunction

Connects to alternative formulation “PMFT”, but this require 
two indices per unknown for non-uniform systems.



Uniform (even and real) condensate wavefunction

Valuable with analytic 
solutions 
for software tests!



General formulation for a complex BEC wavefunction



General formulation for a complex BEC wavefunction



Theory 1: Define all necessary physical observables in terms 
of pairs of raws of the matrixexponential.
Numerics 1: Use efficient software (expokit) for the calculation 
of only these raws from a sparse (truncated) system matrix.

Theory 2: Prove block-matrix symmetries.
Numerics 2: Find block-matrix symmetries and 
implement them in the corresponding algorithms.

Theory 3: Define a D-block-Hankel matrix structure.
Numerics 3: Implement algorithm for multiplication between 
a D-block-Hankel matrix and a vector and incorporate 
them into efficient matrixexponentiation software (expokit).

Major 3 steps towards a realistic 3D simulation:



Theory 1: Define all necessary physical observables in terms 
of pairs of raws of the matrixexponential.

Numerics 1: Use efficient software (expokit) for the calculation 
of theses raws from a sparse (truncation) system matrix.

1.st step towards a realistic 3D simulation:



What do we need to calculate?



Physical observables are formed by pairs of raws



Any observable is available (Wick approximated)



Theory 2: Prove block-matrix symmetries.

Numerics 2: Find block-matrix symmetries and 
implement them in the corresponding algorithms.

2.nd step towards a realistic 3D simulation:



General formulation for a complex BEC wavefunction



Real and even BEC wavefunctions



From symmetries in the system matrix to the observables



From symmetries in the system matrix to the propagator



From symmetries in the system matrix to the propagator



Real BEC wavefunction



Real and even BEC wavefunction (common in exp.)



Theory 3: Define a D-block-Hankel matrix structure.

Numerics 3: Implement algorithm for multiplication between 
a D-block-Hankel matrix and a vector and incorporate 
them into efficient matrixexponentiation software (expokit).

3.rd step towards a realistic 3D simulation:



General formulation for a complex BEC wavefunction



Visualization of a D-block-Hankel matrix (D=3, K=30)



Visualization of a D-block-Hankel matrix (D=3, K=30)



Visualization of a D-block-Hankel matrix (D=3, K=30)



Numerical results for fermionic atom-atom correlations



Numerical evaluations of analytic asymptotes 



Collinear (CL) correlations, molecular dissociation 
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due to particle statistics, (like 
Hanbury Brown and Twiss for 
photons).

We have derived an analytical 
asymptote (dashed lines), strictly 
valid for short times (t/t0<<1).
But useful even for t/t0~1 as here. 
Solid lines are from a numerical 
calculation at t/t0=0.5.
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Observations from the field of ultra-cold atoms:

T. Jeltes et al., Nature
445 (2007) 402.

See also: M. Henny
et al., Science 284, 
296 (1999). For 
‘anti-bunching of 
electrons’ in a solid 
state device.
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First 3D calculation for general BEC wavefunction



Related work:

On the dynamics of the Fermi-Bose model.
M. Ögren and M. Carlsson, To be submitted to J. Phys. A: Math. Gen. 2012.

Stochastic simulations of fermionic dynamics with phase-space representations. 
M. Ögren, K. V. Kheruntsyan and J. F. Corney, Comp. Phys. Comm. 182 1999 (2011).

First-principles quantum dynamics for fermions: application to molecular dissociation.
M. Ögren, K. V. Kheruntsyan and J. F. Corney, Europhys. Lett. 92, (2010) 36003.

Role of spatial inhomogeneity in dissociation of trapped molecular condensates.
M. Ögren and K. V. Kheruntsyan, Phys. Rev. A 82, 013641 (2010).

Directional effects due to quantum statistics in dissociation of elongated molecular condensates.
M. Ögren, C. M. Savage and K. V. Kheruntsyan, Phys. Rev. A 79, 043624 (2009).

Atom-atom correlations from condensate collisions.
M. Ögren and K. V. Kheruntsyan, Phys. Rev. A 79, 021606(R) (2009).

Atom-atom correlations and relative number squeezing in dissociation of spatially inhomogeneous 
molecular condensates.
M. Ögren and K. V. Kheruntsyan, Phys. Rev. A 78, 011602(R) (2008).


