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Nuclear Magnetic Resonance
NMR important tool in modern technology. % E’

Mobile Ex Situ High Resolution NMR R

O unive
APPLICATIONS:

¢ |ndustrial sensing
® Qil well logging
¢ Medical imaging for large subjects

e Spectroscopy

¢ Imaging subjects or objects with ferromagnetic
components

e Cargo inspection

e Stand-off detection
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NMR important tool in modern technology. _ Ej )
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Example of NMR log data from the North Sea
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We see an increased use of | 0,
3D digital images of materials '?
with complex structures within

various applications.
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Input for manufacturing (reverse engineering)







Present application: Understand some _ o
properties of large rocks from 2 D &
small samples...
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We use data from synchrotron radiation facilities.

Measurement done at different positions in the
conical beamline gives different resolution.
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After simplifications of Bloch’s equations
for NMR dynamics, we are left with a

reaction-diffusion equation
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with Robin boundary conditions
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We integrate out the spatial degrees e |

M(t) = |, M (x,t)dx

to obtain a time-dependent total magnetization

For uniform initial conditions, Gauss’ theorem
can provide the short time asymptote

1 dM(t) ~ podS
M) dt |, v
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Try a random approach! e

[.3.3.| Random walk method |( RWM). The RWM can be applied to find the local solution
of second-order partial differential equations of the form

ou(x,t) 4 du(X, f) I

=2, %(X)

ot I;‘ 5
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where o;, f;; are real-valued functions defined on R?, d =1 is an integer, and ¢, p denote
real-valued functions defined on R“ x [0,o0). The_domain of definition of Equation (6) is
D x (0,0¢), where D © R is an open bounded set. The solution u:D x (0,00) — R depends
on the initial and boundary conditions that need to be specified. The operator ot Equation (6)
includes a large number of interesting special cases; for example, parabolic, hyperbolic, elliptic
partial differential equations in R* correspond to the steady—state version of Equation (6) with
d=2 and f5(X) f2(X)— f11(X) f2:(x)=0; >0; <0, respectively. Therefore, for example, the
_Laplace, Poisson and Helmholtz equations are special cases of Equation (6).

The RWM method can be applied to find the local solution of Equation (6) with Dirichlet

_and/or Neumann boundary conditions. The solution by this method involves three steps. Firstz,

a diffusion process X with generator coinciding with the differential operator of Equation (6)
has to be constructed. Second, a relationship needs to be established between the value of
the unknown function u at (X,7)= D x (0,0¢), the boundary conditions, and an expectation
depending on the sample paths of X. Properties of diffusion processes, features of stochastic
integrals, and Ito’s formula can be used to obtain this relationship. Third, a Monte Carlo
algorithm needs to be developed to estimate the expectation giving u(X.7).



- Electric formation féigm

Laplace equation » o
Dirichlet BC at two opposite sides of = Pressure distribution (tO be
the porous media (where the voltage USEd for StOkES ﬂOWS)

or pressure difference is defined).

Poisson equation - Local Stokes flow

Dirichlet BC, which means that the Combine with pressure
velocity is zero at the walls of pores. distribution to 0 Ive flow

through a porous media!
Diffusion equation » - NMR-dynamics

A mixed “Robin” BC. _
- Surface reactions (crystal

growth)
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When discussing the convergence of a stochastic calculation we need to men-
tiomn:

1) A large enough number of trajectories to obtain a statistically significant
result;

2) A small enough step-size to explore the small scale geometry of the media.
The latter issue is also directly connected to the resolution chosen for a digital
media.

If conditions 1) and 2) are fulfilled, one can accuratelly simulate diffusion
processes with Dirichlet ( pg — oo) and Neumann (pg — 0) boundary conditions
in Eq. (4). However, for Robin boundary conditions we need to consider also a
third point.

3) Probability based modeling of the surface relaxation, including:

3a)l a correct (algorithm dependent) relation between the local probability
for surface relaxation (p,) and the function pg (x,1);

3b) A local description of the surface area for a digital media.
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3a) We have derived (first order) relation between
parameters in PDE model and the RWM:

ps = Arp/Dy.

3b) We have constructed (first order) local boundary
conditions that can be calculated “on the fly”:
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Above illustrated in 2D, generalized to any dimension.
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In 2D the effects of ‘digitalization’ is easy
to illustrate and quantify: 0 e
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Comparison with analytic formulae: Ball : [1] :
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where the eigenvalues A; are solutions of the equation 1 — \/Ajcot (\/A;) =
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Comparison with analytic formulae: Cube
I sin® (/)
M(t) = M(0)8 . / E“{p
jz_; Ajsin (/Aj) cos (1/Aj) + A
where the eigenvalues A; are solutions of the equation /A tan = Rop/Dy.
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Present application...???
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Simulations on 3D tomography images - [g -
of chalk with a size in the order of Kt
103X 103X 10° voxels and resolution 10 nm

Top green curve is Limestone, blue is Albchalk, dashed curves are with no surface correction
| | |
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Spectral analysis, yet to be done! 21



Summary:
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 We can now perform stochastic simulations of -
PDE models defined on 3D digital
Images (>1073*1073*10"3) on standard
computers with a ‘relevant’ accuracy.

Q

Outlook:
 Optimize RWM algorithms and evaluate statistic
accuracy for few trajectories (important “in field”).

e Develop a “Bismut” formula to directly calculate
gradients (important for “flow”).

* Enter the area of strength of materials (important for
“local collaborations™)

Special thanks to PhD-student Diwaker Jha at the
University of Copenhagen for providing data!
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Figure 5: Examples of zooming in on regions in the CT-images for the two 3D
chalk samples. To the left limestone (a) and to the right Aalborg chalk (b).
Black (Z = 1) voxels constitutes the pore domain (assumed to be filled with
brine). White (Z = 0) voxels represents regions of homogenous chalk. Aalborg
chalk (b) contains a more complex pore morphology and was imaged with the
new ptychography method, which explains the sharper image compared to (a).
Since the sidelength of the full samples are in the order of NAr ~ 25 pm (see
Table 2), the subvolumes shown here represents about 1% of the chalk sample
domains in our calculations.
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