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Outline of the presentation:

/ Specific examples from the use of the \
Gaussian phase-space method for fermions.
Mainly from the modeling of dissociation of molecular

Bose-Einstein condensates (MBEC) into pair-
correlated fermionic atoms, also the Hubbard model:

I Briefly explain the underlying physical problem,
report on numerical results, and the comparison
with other methods of quantum dynamics.

II How can we improve the performance, and
benchmark the accuracy of the method for such

large system such that we cannot compare with
\independent methods. J




What is the problem | ?

Fermi-Bose model (e.g. molecule --> atoms reaction)

Fermi-Bose model (simplified to a uniform molecular field)
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Application 1: Superconductivity
Friedberg R and Lee T D 1989 Phys. Rev. B 40 6745
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Nuclear physics?
Application 2: Dissociation of ultra-cold molecules
Poulsen U V and Mglmer K 2001 Phys. Rev. A 63 023604
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Does the simplest mean-field description work here

* Gross-Pitaevskii type equations for molecular
dissociation into bosonic atoms:
the corresponding set of coupled equations for

the molecular and atomic mean-fields, Wy and W, respectively, can be written as
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With initially no atoms present we have W;(0) = 0, and all the terms in the right-hand-side
of the second equation will remain zero at all times, N, f drxWi¥,; = 0, such that no
increase i the atom number is possible. In contrast to this, theoretical approaches that
do take into account quantum fluctuations (see Section 2.5.2), do predict the build-up of

atomic population via a spontaneous emission process, and we therefore conclude that the



Motivation to study dissociation into fermions:
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ﬁ Conceptual:

-

Molecular dissociation as a fermionic analog of optical
parametric down-conversion, a good candidate for

developing the paradigm of fermionic quantum atom opftics.

il) Pragmatic:

Can we explain the experimentally observed
atom-atom correlations.

(Molecules made up of fermions have longer lifetime.)
Development of computational tools for fermions.

/




Pairing mean-field theory (PMFT)

Here for a uniform system:

da 1 1. -~
Well known Heisenberg’s equations: (e.g. 75 ~ 77 [“‘f H] )
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This is a system of non-linear operator (ordinary) differential equation, that no
physicist knows how to solve directly.

Factorization of expectation values gives c-number equations.




Pairing mean-field theory

the equations of motion in terms

of the expectation values take the following form:
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where kp = x/ i, A= ke /(2m) + A, and the + (—) sign refers to the case of bosonic
(fermionic) atoms. From these equations we immediately see that in contrast to the Gross-
Pitaevskil mean-field treatment, the pairing mean-field equations allow for the mitiation of

the population n the atomic fields (initially i the vacuum state) via the unity term in the

* Note: Becomes linear if the molecules are undepleted (UMF).
* Note: The *“1:s” are instrumental in Initiating dissociation-
dynamics, compare to ‘GPE’ mean-field equations.




Pairing mean-field theory

Takes into account the depletion of the bosonic field.
This is needed when the number of molecules are small
compared to the available atomic modes.

For a uniform field:

Mo (£) = (o) = (




Observations from the field of ultra-cold atoms:
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Figure 2 | Normalized correlation functions for *“He* (bosons) in the upper
plot, and *He* (fermions) in the lower plot. Both functions are measured at
the same cloud temperature (0.5 uK), and with identical trap parameters.

T. Jeltes et al., Nature
445 (2007) 402.

See also: M. Henny
et al., Science 284,
296 (1999). For
‘anti-bunching of
electrons’ in a solid
state device.



Heisenberg equation (UMF)

(b) Collinear (CL) correlations

(b) bosons

due to particle statistics, (like __ 92

Hanbury Brown and Twiss for >

photons). [V
<

We have derived an analytical N
asymptote (dashed lines), strictly
valid for short times (t/t,<<1).
But useful even for t/t,~1 as here. 0 '
: 0 0.99 | 1 1.01
K/ 0

Solid lines are from a numerical
calculation at t/t;=0.5.

,
+ 9 (-]3/2 (k- kI)RTF])
(k — k') Ryp)?

o



Gaussian Fermionic phase-space representation

d
7 —) = — ﬁ [H p] Liouville eq. for the density operator.
Use fermionic phase-space mappings (recipe), e.g.:
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Fermionic phase-space representation

0=y — iy / ix (T — WU

@ Transform to Fourier space, assume a uniform field.
hz AgNg o — 1hk Z (aomk — mf(a@)

@ Transform to FPE Transform to SDE (compare PMFT)
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Fermionic phase-space representation

Stochastically sampled moments can be related to physical expectation values. For ex-

ample, the first-order moments give:

(s = (i) = (bb.).
{ (mr)s = (my) = (Eskﬁlf:r_k__ﬂ. (6.10)
| {a)s = (a0)/VNo.

Normally ordered higher-order moments are obtaimed exactly by stochastic averages of a

corresponding Wick decomposition [60, 94, 95], as in the following example

(mimi)s + (np)s = (??E.L-r?:rk}. (6.11)

ALL! observables available, though only few first order
moments are propagated in time.



f atomic mode occupations
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We compare with the “number-base expansion” (C.1.)

/ For few modes we can solve the full time-dependent\
Schrodinger equation (“in second quantization’)
for the mixed fermion-boson state.

2 M

n mazx

v(ir) =S N ¢l @) =e T, HeC! xC?

71=1 n=1

Test system with M=10 modes, to compare with the
phase-space method d = oM Ny~ 10°
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Numerical results for molecular dissociation

/ Comparison of atomic mode occupations
(

Excellent agreement up to the spiking time.

e Deviations from mean-field results (PMFT).

e The limited simulation time is ‘enough’ here.

# P

e Operator equality: ﬁﬁtﬁlk (: Nk 1M —k.2

used to check sto- , . + . B n
chastic averages: (1 ) = {

oY




Numerical results for molecular dissociation

Comparison of correlation coefficients C and W

C:Z (M) | /Z( >2> 1

Quantify deviations from PMFT  os

W = Zk<«r’fﬂl—{ﬁ)}k>/ Zk (Hﬁl’kMQ - <ﬁk>2)

Also quantify deviations from
Wick’s theorem




Numerical results for molecular dissociation

/ Comparison of molecular correlations \
1.05 1

(alar

(2) (k) = @%1.
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Molecule-atom correlation 0
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Application to molecular dissociation: Large systems

Multimode simulations with M=1000 atomic modes\
Hilbert space dimension J — 2 . Ny g 5> 10300

The phase-space method handle this on an old PC

2
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e Deviations from PMFT
\ Limited simulation time (enough for this application)




Application to molecular dissociation: Large systems

Multimode simulations with M=1000 atomic modes\

- 1.05 (b) -

The phase-space 1
method reveals
correlations 0.95!

not available
within PMFT . 09 | . . 1

= 1.025

(However, PMFT . (c)
performs well
for atom
numbers and

@sities.)




What about higher dimensions?

Dynal NIiCS 11N 2 dll Nensions Atomic momentum distribution at time = 10:
. =500
Molecular correlations
: : : : atom density
S thermal level peaks around
thermal reached when x . resonant ring
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Fermionic phase-space representation

Exploring gauge freedoms to extend simulation time
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As a first step we have
optimized a ‘complex
number’ diffusion gauge -

(c1)=lm(c2)

Extend simulation
time with >50%




Fermionic phase-space representation

Examples of different realizations of the stochastic terms

dny = (amk + mk) dt + N 2 B dW,
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Note that if the stochastic terms are neglected we obtain PMFT!



Fermionic phase-space representation

Conserved quantities:
Fk — <ﬁiLifﬁk> — <ﬁk>

E = (H)/2h|A]

Stochastic implementation:
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Fermionic phase-space representation

eters. In addition, we have shown that the simulation
of conserved quantities can have qualitatively different
behaviour for different gauges. The conserved quantities

thus provide a check on numerical implementation and
allow the performance of different gauges to be bench-
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Fermionic phase-space representation

. For the energy and particle number, the average is still
constant within the sampling error, as shown in Figs. 2 and 3.
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What is the problem Il ?

Rahav S and Mukamel S 2009 Phys. Rev. B 79 165103
General two-Body interaction (e.g. Coulomb)

ﬁ:ZTﬁErEﬁ‘F Z Vﬂﬁ.},{g(m(i}g(,yCﬁ (2)

af3yo

The indices a, B, vy, 6 denote an orthogonal one particle basis
of spin orbitals. The creation and annihilation operators sat-
sty the Fermi anticommutation rule,

Eﬁ+c‘3cﬂ 5 (3)

Physicists playground (fermionic Hubbard model)

H= —Jﬁz [ Cio+ LHZ A 175 4 ﬁz Vi i
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Work in progress: Hubbard model

To investigate how the phase-space method works for fermionic systems with atom-atom

interactions, we focus on the Hamiltonian

H:—Jﬁ.g i MCJJ—I—L}E E n,“n“—khg Jghg i, (6.21)
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Correct results (--Cl), limited simulation time! 30
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Summary of fermionic phase-space results

K First dynamical multi-mode phase-space simulation \
for fermionic atoms from dissociation successful!

* Large deviations from mean-field methods (PMFT) for
some correlations. Justify PMFT for atom numbers and
densities if the molecular depletion is small.

* Diffusion gauges change the numerical performance
kand can qualitatively change the behaviour of /

conserved quantities.




Thank you!



